Enhanced Binary Moth Flame Optimization as a Feature Selection Algorithm to Predict Software Fault Prediction
نویسندگان
چکیده
منابع مشابه
A Novel Feature Subset Selection Algorithm for Software Defect Prediction
Feature subset selection is the process of choosing a subset of good features with respect to the target concept. A clustering based feature subset selection algorithm has been applied over software defect prediction data sets. Software defect prediction domain has been chosen due to the growing importance of maintaining high reliability and high quality for any software being developed. A soft...
متن کاملApplying Feature-Selection Algorithm to Predict Landslide in the Southwest of Iran
Extended abstract 1- INTRODUCTION Nowadays people have an increased sensitivity towards landslides especially in mountainous areas using change in the land use and the expansion of communication networks (Gvrsysky et al., 2006). In the twentieth century, Asia has allocated the highest incident of landslides (220 landslides). Latin America has had the highest number of casualties (more than 2,...
متن کاملOptimal Reactive Power Dispatch Using Moth-Flame Optimization Algorithm
This paper describes a newly developed Moth-Flame optimization algorithm to deal with optimal reactive power dispatch problem. The prime intention of reactive power dispatch problem is to curtail the real power loss and control the bus voltages in power system network. The Moth-Flame algorithm is one of the most powerful and robust new global optimization algorithms in engineering. The primary ...
متن کاملMetaheuristic Optimization based Feature Selection for Software Defect Prediction
Software defect prediction has been an important research topic in the software engineering field, especially to solve the inefficiency and ineffectiveness of existing industrial approach of software testing and reviews. The software defect prediction performance decreases significantly because the data set contains noisy attributes and class imbalance. Feature selection is generally used in ma...
متن کاملAuto-optimization of a Feature Selection Algorithm
Advanced visualization algorithms are typically computationally expensive but highly data parallel which make them attractive candidates for GPU architectures. However, porting algorithms on a GPU still remains a challenging process. The Mint programming model addresses this issue with its simple and high level interface. It targets the users who seek real-time performance without investing in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2964321