Enhanced Binary Moth Flame Optimization as a Feature Selection Algorithm to Predict Software Fault Prediction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Feature Subset Selection Algorithm for Software Defect Prediction

Feature subset selection is the process of choosing a subset of good features with respect to the target concept. A clustering based feature subset selection algorithm has been applied over software defect prediction data sets. Software defect prediction domain has been chosen due to the growing importance of maintaining high reliability and high quality for any software being developed. A soft...

متن کامل

Applying Feature-Selection Algorithm to Predict Landslide in the Southwest of Iran

Extended abstract 1- INTRODUCTION Nowadays people have an increased sensitivity towards landslides especially in mountainous areas using change in the land use and the expansion of communication networks (Gvrsysky et al., 2006). In the twentieth century, Asia has allocated the highest incident of landslides (220 landslides). Latin America has had the highest number of casualties (more than 2,...

متن کامل

Optimal Reactive Power Dispatch Using Moth-Flame Optimization Algorithm

This paper describes a newly developed Moth-Flame optimization algorithm to deal with optimal reactive power dispatch problem. The prime intention of reactive power dispatch problem is to curtail the real power loss and control the bus voltages in power system network. The Moth-Flame algorithm is one of the most powerful and robust new global optimization algorithms in engineering. The primary ...

متن کامل

Metaheuristic Optimization based Feature Selection for Software Defect Prediction

Software defect prediction has been an important research topic in the software engineering field, especially to solve the inefficiency and ineffectiveness of existing industrial approach of software testing and reviews. The software defect prediction performance decreases significantly because the data set contains noisy attributes and class imbalance. Feature selection is generally used in ma...

متن کامل

Auto-optimization of a Feature Selection Algorithm

Advanced visualization algorithms are typically computationally expensive but highly data parallel which make them attractive candidates for GPU architectures. However, porting algorithms on a GPU still remains a challenging process. The Mint programming model addresses this issue with its simple and high level interface. It targets the users who seek real-time performance without investing in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2964321